New Pests of Ficus Whitefly and Thrips

Catharine Mannion
UF/IFAS Tropical Research and Education Center
cmannion@ufl.edu
http://mannion.ifas.ufl.edu
Recent Pest Problems on Ficus

Whitefly

Thrips

Photos: H. Glenn, UF/IFAS
Fig Whitefly
Singhielia simplex

- New U.S. continental record
- Miami-Dade County (approximately 35 sq miles)
- Looks like a typical whitefly

Photos: H. Glenn, UF/IFAS
Plant Hosts

Ficus species
- *F. benjamina* (weeping fig)
- *F. altissima*
- *F. bengalensis* ("banyan tree")
- *F. aurea* (strangler fig)
- *F. microcarpa* (Cuban laurel)
- *F. maclellandii* (banana-leaf fig)
Damage

- Leaves turn yellow
- Rapid defoliation

Photos: H. Glenn and C. Mannion, UF/IFAS
Natural Enemies - Parasitoid

Encarsia protransvena

Parasitized whiteflies

Photos: H. Glenn, UF/IFAS
Natural Enemies - Predators

Three predatory beetles identified thus far:

- *Curinus coeruleus*
- *Chilocorus nigritis*
- *Exochomus childreni*

Photos: H. Glenn, UF/IFAS
Parasitized Whitefly

Number of Whitefly per 30 Leaves

Oct Nov

Live Dead

0 10 20 30 40 50
Management

• Monitor ficus plants for early signs of infestation
• Monitor for natural enemies
• When pruning trees and hedges, bag clippings
Management

• Homeowners
 – Insecticidal soap and oil sprays
 – Thorough coverage is necessary
 – Repeat applications 7 – 10 days
 – Systemic insecticides
 • Imidacloprid (Bayer Advanced Tree and Shrub)
 • Dinotefuran (Spectricide Tree and Shrub)
 – Contact insecticides
 • Bifenthrin (Ortho Bug-B-Gon); Cyfluthrin (Bayer Advanced rose and Flower); Sevin (Carbaryl); malathion and others
Management

• Professional Use (Landscape and Nursery)
 – Systemic insecticides – soil treatment
 • Clothianadín (Celero)
 • Thiamethoxam (Flagship)
 • Imidaclorpid (Merit, Marathon, Discus*, Allectus*)
 • Dinotefuran (Safari)
 – Insecticides – foliar treatment
 • Flonicamid (Aria), Abamectin (Avid), Azadirachtin, Pyriproxyfen (Distance), Pymentrozine (Endeavor), Endosulfan, Spiromesifen (Judo), Buprofezin, (Talus), Acetamiprid (Tristar)
Q Biotype Whitefly
Bemisia tabaci

- Whitefly is a major pest of vegetables and ornamental crops around the world
- Q biotype – resistant to many of the commonly used insecticides
- http://mrec.ifas.ufl.edu/lso/bemisia/bemisia.htm
Pesticide Mode of Action

• How the pesticide works in the insect
• Classify compounds by their mode of action
 – IRAC (Insecticide Resistance Action Committee)
 – An Interactive Mode of Action tool
 http://www.irac-online.org/eClassification/
 – Chemical Class Chart (ohp.com)
Neonicotinoid Compounds (MOA 4)

<table>
<thead>
<tr>
<th>Acetamiprid</th>
<th>TriStar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinotefuran</td>
<td>Safari</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>Marathon/Merit Discus/Allectus*</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>Flagship</td>
</tr>
</tbody>
</table>

*Combination products (imidacloprid + pyrethroid)
Ficus Thrips
(*Gynaikothrips uzeli*)

- First noted in 2003 due to heavy damage on *Ficus benjamina* in south Florida
- Prefer tender, new foliage
- Feeding causes sunken, reddish spots on leaves. Leaves tend to curl and fold inward.
Management - Thrips

- Detection of thrips can be done by placing a white paper beneath the leaves or flowers and shake the plant.
- Look for the small spots of varnish like excrement on the leaves
- Biological control
 - Resident populations of predaceous thrips, minute pirate bugs, and predaceous mites help but cannot be relied upon for adequate control
 - Some success with releases
<table>
<thead>
<tr>
<th>Group 1B – Organophosphates</th>
<th>Group 6 – Avermectin</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acephate (such as Orthene)</td>
<td>• Abamectin (Avid)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 3 – Pyrethroids</th>
<th>Group 9 – Unknown/nonspecific</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bifenthrin (Talstar, Onyx)</td>
<td>• Flonicamid (Aria)</td>
</tr>
<tr>
<td>• Cyfluthrin (Tempo, Discus)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 4A – Neonicotinoids</th>
<th>Group 15 – Benzoylureas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acetamiprid (TriStar)</td>
<td>• Novaluron (Pedestal)</td>
</tr>
<tr>
<td>• Dinotefuran (Safari)</td>
<td></td>
</tr>
<tr>
<td>• Imidacloprid (Marathon, Discus)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5 – Spinosyn</th>
<th>Group 18B – Azadirachtin</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Spinosad (Conserve)</td>
<td>• Azadirachtin (Azatin, Ornizin)</td>
</tr>
</tbody>
</table>
Gnaikothrips uzeli

Mean Number Thrips

Sample date

Mean Number Predatory Bug

Sample date

- Control 1
- Control 2
Gnaikothrips uzeli

![Graph showing population changes of Gnaikothrips uzeli over time with different treatments.](image-url)
Management of Ficus Thrips (Gynaikothrips uzeli)

- Thrips peak in late spring and late summer
- The predatory bugs were able to bring the populations back down after these peak periods
- Orthene and Safari (drench treatments) provided control – may only be needed during peak thrips populations
- All insecticides reduced the number of predators
- Overall, the level of damage did not differ much between the insecticide treatments and the control treatments over the long term
Managing Pests

• http://edis.ifas.ufl.edu/
• http://creatures.ifas.ufl.edu/
• http://mannion.ifas.ufl.edu
• Pest Alerts
 – University of Florida
 (http://extlab7.entnem.ufl.edu/pestalert/)
 – DOACS (http://doacs.state.fl.us/~pi/enpp/pi-pest-alert.html)
• Pests you have not seen before or unexpected damage
Catharine Mannion
Research and Extension Specialist
Ornamental Entomology

University of Florida, IFAS
Tropical Research and Education Center
18905 SW 280th Street
Homestead, FL 33031

305-246-7000
http://mannion.ifas.ufl.edu
cmannon@ufl.edu