The Hibiscus Bud Weevil: Biology & Ecology

Alexandra M. Revynthi

Yisell Velazquez Hernandez, Maria A. Canon, Marcello De Giosa, Isamar Reyes-Arauz, Paola Villamarin, Ana Garcia, A. Daniel Greene & German Vargas

NATIONAL HORTICULTURE FOUNDATION. The Hibiscus Bud Weevil (HBW) (Anthonomus testaceosquamosus)

- Native to northeastern Mexico and southern Texas
- First detection in FL in 2017
- Present in Miami-Dade, Broward and Hernando counties
- A regulated pest!

Florida Department of Agriculture and Consumer Services Division of Plant Industry

Anthonomus testaceosquamosus Linell, the hibiscus bud weevil, new in Florida

Paul E. Skelley; Bureau of Entomology, Nematology and Plant Pathology Lance S. Osborne; UF/IFAS Mid-Florida Research and Education Center DPIHelpline@FreshFromFlorida.com or 1-888-397-1517 **FDACS-P-01883** Pest Alert created May 2018

The Hibiscus Bud Weevil (HBW)

HBW Female vs. Male

Revynthi et al., EDIS 2021, pp. 1–7.

4

HBW Damage

Photos: Y. Velazquez Hernandez & J. Rodriguez

HBW Damage

Photos: Y. Velazquez Hernandez & G. Vargas

Hibiscus Bud Midge

- "Gnat"
- Causes bud drop

TYNE STREET

UF FLORIDA

Photos: C. Mannion

Hibiscus bud weevil larva

Hibiscus bud weevil pupa

Hibiscus Bud Weevil Vs. Hibiscus Bud Midge

UF FLORIDA

Hibiscus bud <u>midge</u> larva

Hibiscus bud <u>midge</u> pupa

Effect of Temperature on HBW Development

Temperat. (°F)	Egg	First Instar	Second Instar	Third Instar	Pupa	Egg to Adult
50	78.2 ± 0.55	X	X	X	X	X
55	13 ± 1.33	4.9±0.86	12.75 ± 2.46	87 ± 14.01	X	X
80	3.35 ± 0.31	2.6 ± 0.24	3.73 ± 0.48	2.05 ± 0.19	4.1 ± 0.27	15.78 ± 0.83
93	5.5 ± 0.29	2.53 ± 0.29	8.92 ± 1.3	25.5 ± 8.86	X	X

Reproduction of the HBW

- At 80 F on average 5.9 eggs/Female/Day
- Require mating
- They cannot reproduce when feed only on pollen

Longevity of the HBW

- When virgin, females live longer than males
 - 9 109 and o 86 days

- When mated, males live longer than females
 - 9 47 and & 111 days

Survival With and Without Water

Water (GLM: χ^2 = 11.16, df = 1, *p* < 0.001)

Monitor of HBW Populations in a Nursery

- Bi-weekly sampling of hibiscus buds from
 - the plants
 - the ground
- 31 Yellow sticky cards
- Single and double varieties
- Different flower colors

UF FI OPTO

Monitor of HBW Populations in a Nursery

UF FLORIDA

Climatic Conditions During 2023 Sampling

UF FLORIDA

Emerged HBW from Buds on the Plants

HBW females ■ HBW males HBW larvae 70 Number of HBW 60 50 40 30 20 10 0 Jan Feb Mar May Jun Jul Sep Oct Nov Apr Aug Dec

Emerged HBW from Buds on the Ground

HBW females HBW larvae ■ HBW males 60 Number of HBW 50 40 30 20 10 0 Feb Jan Mar Apr Jul Sep Oct Nov May Jun Aug Dec

HBW Caught on Yellow Sticky Cards

Why the HBW Populations Do Not Disappear?

Does the HBW have an alternative host?

Okra

- Abelmoschus esculentus or Hibiscus esculentus
- Same family as Hibiscus (Malvaceae)
- Cultivated in FL, March-November
- It flowers approx. within 55-65 days

Can HBW Complete its Life Cycle on Okra?

- Experiments at 80 °F, 70% RH and 12:12 / L:D
- Two bud sizes:
 - 0.7 inch (1.87 cm)
 - 2 inch (5 cm)
- Development and reproduction

HBW Development on Okra buds

Bud Size (inch)	Egg	First Instar	Second Instar	Third Instar	Pupa	Egg to Adult	Mortality
0.7	4.2 ± 0.21	2.9 ± 0.34	2.5 ± 0.34	1.4 ± 0.52	0.4 ± 0.71	11.3 ± 0.69	77.4%
2	5.26 ± 0.17	2.03 ± 0.4	2.32 ± 0.46	3.42 ± 0.8	1.81 ± 0.68	14.84±1.29	58.06%
Hibiscus	3.35 ±0.31	2.6 ± 0.24	3.73 ±0.48	2.05 ±0.19	4.1 ± 0.27	15.78 ±0.83	10%

HBW Reproduction on Okra

- Eggs laid on okra buds: 0.1 eggs/Female/Day
- Big buds: max 3 eggs/day
- Small buds: max 2 eggs/day

Take-home Messages

- HBW can successfully complete its life cycle within 2 wks. at 80 °F on hibiscus and okra
- South FL conditions favorable for HBW throughout the year
- HBW activity picks in spring and fall
- Okra can serve as alternative host

Resources

HOME ABOUT PEOPLE TEACHING RESEARCH EXTENSION TREC IN THE NEWS

TROPICAL RESEARCH & EDUCATION CENTER

HIBISCUS BUD WEEVIL

The hibiscus bud weevil is a pest of tropical hibiscus (Hibiscus rosasinensis L.). This weevil originates from northeastern Mexico and southern Texas and was first found in Florida in May 2017. This pest feeds and oviposits in the flower buds. As a result of the larval feeding, severe bud drop is observed, decreasing the marketability of the crop. The hibiscus bud weevil is a regulated pest by the Florida Department of Agriculture and Consumer Services, Division of Plant Industry (FDACS-DPI). Because of this designation, any nursery found with this weevil must sign and follow a compliance agreement with FDACS-DPI to reduce the chance of spreading the weevil.

RESOURCES

- Pest alert 2018
- EDIS Publication
- Biology of Anthonomus testaceosquamosus Linell, 1897 (Coleoptera Curculionidae): A New Pest of Tropical Hibiscus
 HBW handout english
- HBW handout Spanish

ENY-2069 https://doi.org/10.32473/edis-IN1328-2021

The Hibiscus Bud Weevil, Anthonomus testaceosquamosus Linell (Coleoptera:

Curculionidae)

The Hibiscus Bud Weevil (*Anthonomus testaceosquamosus* Linell, Coleoptera: Curculionidae)¹

Alexandra M Revynthi, Yisell Velazquez Hernandez, Juleysy Rodriguez, Paul E Kendra, Daniel Carrillo, Catharine M Mannion²

El Picudo del Botón del Hibisco (Anthonomus testaceosquamosus Linell, Coleoptera: Curculionidae)¹

Alexandra M Revynthi, German Vargas, Yisell Velazquez Hernandez, Paul E Kendra, Daniel Carrillo y Catharine M Mannion²

Biology of Anthonomus testaceosquamosus Linell, 1897 (Coleoptera: Curculionidae): A New Pest of Tropical Hibiscus

Alexandra M. Revynthi ^{1,*}^(D), Yisell Velazquez Hernandez ¹, Maria A. Canon ¹, A. Daniel Greene ¹(), German Vargas ¹, Paul E. Kendra ²() and Catharine M. Mannion ¹

insects

MDPI

Article

Article

Lethal and Sublethal Effects of Contact Insecticides and Horticultural Oils on the Hibiscus Bud Weevil, *Anthonomus testaceosquamosus* Linell (Coleoptera: Curculionidae)

A. Daniel Greene^{1,*}^(D), Xiangbing Yang²^(D), Yisell Velazquez-Hernandez¹, German Vargas¹^(D), Paul E. Kendra²^(D), Catharine Mannion¹ and Alexandra M. Revynthi^{1,*}^(D)

agriculture

IFAS Extension

MDPI

ENY2069

https://doi.org/10.32473/edis-IN1413-2023

Article

A Prophylactic Application of Systemic Insecticides Contributes to the Management of the Hibiscus Bud Weevil *Anthonomus testaceosquamosus* Linell (Coleoptera: Curculionidae)

German Vargas ^{1,+}^(D), A. Daniel Greene ²^(D), Yisell Velazquez-Hernandez ¹, Xiangbing Yang ³^(D), Paul E. Kendra ³^(D) and Alexandra M. Revynthi ¹^(D)

O bicudo do botão do hibisco (Anthonomus testaceosquamosus Linell, Coleoptera: Curculionidae)¹

Alexandra M Revynthi, Livia M S Ataide, Yisell Velazquez Hernandez, Paul E Kendra, Daniel Carrillo, Catharine M Mannion²

Miami-Dade County Agricultural Manager's Office Hibiscus Bud Weevil Task Force Paul E Kendra Catharine Mannion Xingbo Wu

NACA: 58-6038-8-004

EST. 1869 CALLER SERVICE

FAIN: 21SCBPFL1022

28486

NATIONAL HORTICULTURE FOUNDATION.

Thank you!

Alexandra Revynthi, PhD Assistant Professor Ornamental Entomology & Acarology

University of Florida, IFAS Tropical Research and Education Center 18905 SW 280 Street Homestead, FL 33031

> <u>arevynthi@ufl.edu</u> T: +1 786-217-9244