Skip to main content


Tropical Research & Education Center

Tropical Research & Education Center

Publications


Extension Publications

Bateman, C. and J. Hulcr. 2020. A guide to Florida’s common bark and ambrosia beetles. https://edis.ifas.ufl.edu/fr389  

Crane, J.H., D. Carrillo, E.A. Evans, R. Gazis, B. Schaffer, F. Ballen, and J. Wasielewski. 2020. Recommendations for control and mitigation of laurel wilt and ambrosia beetle vectors in commercial avocado groves in Floridahttps://edis.ifas.ufl.edu/hs1360  

Crane, J.H., D. Carrillo, E.A. Evans, R. Gazis, B. Schaffer, F. Ballen, and J. Wasielewski. 2020. Recomendaciones para el control y mitigación de la marchitez del laurel y sus vectores, los escarabajos ambrosia, en arboledas comerciales de Aguacate en Florida. https://edis.ifas.ufl.edu/hs1379   

Crane, J.H., J. Wasielewski, D. Carrillo, R. Gazis, B. Schaffer, F. Ballen and E. Evans. 2020. Recommendations for the detection and mitigation of laurel wilt disease in avocado and related tree species in the home landscape. https://edis.ifas.ufl.edu/hs1358  

Crane, J.H., J. Wasielewski, D. Carrillo, R. Gazis, B. Schaffer, F. Ballen and E. Evans. 2020Recomendaciones para la detección y mitigación de la marchitez del laurel en árboles de aguacates y especies relacionadas en jardines y patios hogareñoshttps://edis.ifas.ufl.edu/hs1384  

Crane, J., R. Gazis, J. Wasielewski, D. Carrillo, B. Schaffer, F. Ballen and E. Evans. 2020. Sampling guidelines and recommendations for submitting samples for diagnosing laurel wilt in avocado trees (Persea americana Mill). https://edis.ifas.ufl.edu/hs1394  

Crane, J.H. and J.A. Smith. 2010. Homeowner detection of and recommendations for mitigating redbay ambrosia beetle – laurel wilt disease on redbay and avocado trees in the home landscape. https://journals.flvc.org/edis/article/view/118504  

Crane, Jonathan, Jorge Peña, and J. Osborne. 2008 (revised). Redbay ambrosia beetle-laurel wilt pathogen: a potential major problem for the Florida avocado industry”. EDIS 2008 (2). https://journals.flvc.org/edis/article/view/119075 

De Oleo, B., E.A. Evans and J.H. Crane. 2017. Establishment cost of avocados in south Florida. https://edis.ifas.ufl.edu/fe956  

Evans, E.A. and J.H. Crane. 2019. Estimates of the replacement costs of commercial and backyard avocado trees in south Florida. https://edis.ifas.ufl.edu/fe825 

Evans, E.A. and J.H. Crane. 2019Costos estimados de reemplazo de árboles de aguacate en plantaciones comerciales y patios en el sur de Floridahttps://edis.ifas.ufl.edu/fe838  

Evans, E.A. and J.H. Crane. 2010Costos estimados de reemplazo de árboles de aguacate en plantaciones comerciales y patios en el sur de Floridahttps://journals.flvc.org/edis/article/view/118681  

Edward, E.A. and J.H. Crane. 2009. Estimates of the replacement costs of commercial and backyard avocado trees in south Florida. https://journals.flvc.org/edis/article/view/118248  

Mann, R., J. Hulcr, J. Peña and L. Stelinski. 2019. Redbay ambrosia beetle Xyleborus glabratus Eichhoff (InsectaCoeoptera: Curculionidae: Scolytinae). https://edis.ifas.ufl.edu/in886  

Mayfield III, A.E., J.H. Crane, and J.A. Smith. 2008. Laurel wilt: a threat to redbay, avocado and related trees in urban and rural landscapes. EDIS 2008 (3). https://journals.flvc.org/edis/article/view/117241  

Sobel, L., A. Lucky, and J. Hulcr. 2018. An ambrosia beetle Xyleborus affinis Eichhoff (1868) (Insecta: Coleoptera: Curculionidae: Scolytinae). https://edis.ifas.ufl.edu/in1094  

Spence, D., J. Smith, A. Mayfield III, J. Hulcr, R. Ploetz, and L. Stelinski. 2011. Assessing the survival of the redbay ambrosia beetle and laurel wilt pathogen in wood chips. https://journals.flvc.org/edis/article/view/119451


Journal Articles

Abdulridha, J., R. Ehsani, A. Abd-Elrahman, and Y. Ampatzidis. 2019. A remote sensing technique for detecting laurel wilt disease in avocado presence of other biotic and abiotic stress. Computers and Electronics in Agriculture 156:549-557. 

Abdulridha, J.Y. AmpatzidisR. Ehsaniand A. de Castro. 2018. Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado. Computers and Electronics in Agriculture 155:203-2011. 

Abdulridha, J., R. Ehsaniand A. de Castro. 2016. Detection and differentiation between laurel wilt disease, phytophthora disease and salinity damage using a hyperspectral sensing technique. Agriculture 6: doi:10.3390/agriculture6040056 (13 pages). 

Abdulridha, J., R. Ehsani, A. de Castro, R. Ploetz, and J. Konkol. 2015. Differentiate laurel wilt disease and nutrient deficiency in avocado trees using Vis – NIR spectroscopy. Amer. Society Agric. and Biol. Engineers doi: 10.13031/aim.20152189572 (5 pages). 

Atkinson, T.H., D. Carrillo, R.E. Duncan, J.E. Peña. 2013. Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. Zootaxa 3669: 96–100. 

Atkinson, T.H. and S.B. Peck. 1994. Annotated checklist of the bark and ambrosia beetles (Coleoptera: Scolytidae) of tropical southern Florida. Fla. Entomol. 77:313–329. 

Avery, P.B., V. Bojorque, C. mez, R.E. Duncan, D. Carrillo and R.D. Cave. 2018. Spore acquisition and survival of ambrosia beetles associated with the laurel wilt pathogen in avocados after exposure to entomopathogenic fungi. Insects 9(49): doi: 20.3390/insects9020049  

Beckman, F.C. 2012. Laurel wilt: assessing the risk of pruning tool transmission of Raffaelea lauricola. Thesis, University of Florida, IFAS. 56 pages. 

Blaz,J.Barrera-Redondo, M. Vázquez-Rosas-Landa, A. Canedo-Téxon, E. Aguirre, D. Carrillo, R. Stouthamer, A. Eskalen, E. Villafán E, A. Alonso-Sánchez, L. Lamelas, L.A. Ibarra-Juarez, C.A. Pérez-Torres, and E. Ibarra-Laclette E. 2019. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life 9 (2): doi:10.3390/life9010002. 

2012. Florida Department of Agriculture and Consumer Services identifies laurel wilt disease in avocado production area of Miami-Dade County. 

Brar, G.S., J.L. Capinera, P.E. Kendra, J.A. Smith and J.E. Peña. 2015. Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 98:856-864. 

Brar, G.S., J.L. Capinera, P.E. Kendra, J.A. Smith and J.E. Peña. 2015. Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 98:856-864. 

Brar, G.S., J.L. Capinera, P.E. Kendra, S. McLean and J.E. Peña. 2013. Life cycle, development, and culture of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 96:1158-1167. 

Brar, G.S., J.L. Capinera, P.E. Kendra, S. McLean and J.E. Peña. 2012. Effect of trap size, trap height and age of lure on sampling Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and its flight periodicity and seasonality. Florida Entomologist 94:1003-1011. 

Brar, G.S., J.L. Capinera, S. McLean, P.E. Kendra, R.C. Ploetz and J.E. Peña. 2012. Effect of trap size, trap height and age of lure on sampling Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and its flight periodicity and seasonality. Florida Entomologist 94:1003-1011. 

Campbell, A.S., R.C. Ploetz, and J.A. Rollins. 2017. Comparing avocado, swamp bay, and camphortree as hosts of Raffaelea lauricola using a green fluorescent protein (GFP)-labeled strain of the pathogen. Phytopathology 107:70-74. 

Carrillo, J.D.P.F. Rugman-Jones, D. Husein, J.E. Stajich, M.T. Kasson, DCarrillo, R. Stouthamer, A. Eskalen. 2019. Members of the Euwallacea fornicatus species complex exhibit promiscuous mutualism with ambrosia fungi in Taiwan. Fungal Ecology (133) doi.org/10.1016/j.fgb.2019.103269. 

Carrillo, D., L.F. Cruz, P.E. Kendra, T.I. Narvaez, W.S. Montgomery, A. Monterroso, C. De Grave, and M.F. Cooperband. 2016. Distribution, pest status and fungal associates of Euwallacea nr. fornicates in Florida avocado groves. Insects doi:10.3390/insects7040055  

Carrillo, D., C.A. Dunlap, P.B. Avery, J. Navarrete, R.E. Duncan, M.A. Jackson, R.W. Behle, R.D. Cave, J. Crane, A.P. Rooney, and J.E. Peña. 2015. Entomopathogenic fungi as biological control agents for the vector of the laurel wilt disease, the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae). Biological Control 81:44-50.  

Carrillo, D., R.E. Duncan, J.N. Ploetz, A.F. Campbell, R.C. Ploetz, and J.E. Peña. 2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology 63:54-62.  

Carrillo, D., J.H. Crane, and J.E. Peña. 2013. Potential of contact insecticides to control Xyleborus glabratus (Coleoptera: Curculionidae), a vector of laurel wilt disease in avocados. J. Econ. Entomol. 106:2286-2295. 

Carrillo, D., R.E. Duncan and J.E. Peña. 2012. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. The Florida Entomologist 95:573-579. 

Castrejón-Antonio, J.E., P. Tamwz-Guerra, R. Montesinos-Matías, M.J. Ek-Ramos, P.M. Garza-López, H.CArrendondo-Bernal. 2020. Selection of Beauveria bassiana (Hypocreales: Cordycipitaceae) strains to control Xyleborus affinis (Curculionidae: Scolytinae) females. PeerJ 8:e9472 https://doi.org/10.7717/peerj.9472  

Castrejón-Antonio, J. E., R. Montesinos-Matías, N. Acevedo-Reyes, P. Tamez Guerra, M. Á. Ayala-Zermeño, A. M. Berlanga-Padilla, and H. C. Arredondo Bernal. 2017. especies de Xyleborus (Coleoptera: Curculionidae: Scolytinae) asociados a huertos de aguacate en Colima, México. Acta Zool. Mex. 33: 146-150. 

Choudhury, R.A., H.L. Er, M. Hughes, J.A. Smith, G.E. Pruett, J. Konkol, R.C. Ploetz, J.J. Marois, K.A. Garrett, and A.H.C. van Bruggen2019. Host density dependence and environmental factors affecting laurel wilt invasion. https://doi.org/10.1101/642827 (14 pages). 

Cooperband, M.F., R. Stouthamer, D. Carrillo, A. Eskalen, T. Thibault, A.A. Cossé, L.A. Castrillo, J.D. Vandenberg, and P.F. Rugman-Jones. 2016. Biology of two members of the Euwallacea fornicates species complex (Coleoptera: Curculionidae: Soclytinae), recently invasive in the U.S.A., reared on an ambrosia beetle artificial diet. Agricultural and Forest Entomology 18:223-237. 

Crane, J.H., D. Carrillo, E.A. Evans, R. Gazis, B. Schaffer, FBallen and J. Wasielewski. 2020. Current recommendations for control of laurel wilt and its ambrosia beetle vectors in Florida’s commercial avocado groves. Proc. Fla. State Hort. Soc. 133:(accepted). 

Crane, J.H., D. Carrillo, R. Gazis, J. Wasielewski, E.A. Evans, F. Ballen and B. Schaffer. 2019. Control and mitigation strategies for laurel wilt and ambrosia beetle vectors. IX World Avocado Congress, Medellin, Colombia. Sept. 24-28, 2019 (11 pages). 

Crane, J.H., J. Wasielewski, D. Carrillo, E.A. Evans, B. Schaffer, F. Ballen and R. Gazis. 2019. Effect of the laurel wilt epidemic on Florida’s avocado industry. IX World Avocado Congress, Medellin, Colombia. Sept. 24-28, 2019 (11 pages). 

Crane, J., R. Ploetz, D. Carrillo, E. Evans, J. Wasielewski, and D. Pybas. 2016. Current management recommendations for laurel wilt of avocados. Proc. Fla. State Hort. Soc. 129:4-10.  

Crane, J.H. D. Carrillo, R.C. Ploetz, E.A. Evans, A.J. Palmateer and D. Pybas. 2015. Current status and control recommendations for laurel wilt and the ambrosia beetle vectors in commercial avocado (Persea americana Mill.) orchards in south Florida. ACSTAS, Proc. Of the VIII Congreso Mundial de la Palta, Lima, Peru. 13-18 Sept. 2015 (6 pages). 

Crane, J.H., R.C. Ploetz, T. White, G.C. Krogstad, T. Prosser, J. Konkol, and R. Wideman. 2015. Efficacy of three microinfused fungicides to control laurel wilt on avocado in Martin and Brevard Counties. Proc. Fla. State Hort. Soc. 128:58-60. 

Crane, J.H., E.A. Evans, D. Carrillo, R.C. Ploetz, and A.J. Palmateer. 2015. The potential for laurel wilt to threaten avocado production is real. ACTAS, Proc. Of the VIII Congreso Mundial de la Palta, Lima, Peru. 13-18 Sept. 2015 (9 pages). 

Crane, J.H., W. Montás, E.A. Evans and R. Olszack. 2014. How to make a simple and inexpensive passive and pressurized infusion system for systemically applied pest control substances to fruit trees. Proc. Fla. State Hort. Soc. 127:6-9. 

Cruz, L.F., S.A. Rocio, L.G. Duran, O. Menocal, C.D.J. Garcia-Avila, and D. Carrillo. 2018. Developmental biology of Xyleborus bispinatus (Coleoptera: Curculionidae) reared on an artificial medium and fungal cultivation of symbiotic fungi in the beetle’s galleries. Fungal Ecology 35:116-126. 

Cruz, L.F., O. Menocal, J. Mantilla, L.A. Ibarra-Juarez, and D. Carrillo. 2019Xyleborus volvulus (Coleoptera: Curculionidae): biology and fungal associates. Appl. Environ. Microbiology 85: https://doi.org/10.1128/AEM.01190-19. 

De Castro, A.I., R. Ehsani, R. Ploetz, J.H. Crane, and J. Abdulridha. 2015. Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sensing of Environment 171:33-44. 

De Castro, A.I., R. Ehsani, R. Ploetz, J.H. Crane, and S. Buchanon. 2015. Detection of laurel wilt disease in avocado using low altitude aerial imaging. PLoS ONE 10(4): e0124642. doi:10.1371/journal.pone.0124642 (13 pages). 

Dreaden, T.J., M.A. Hughes, R.C. Ploetz, A. Black and J.A. Smith. 2019. Genetic analyses of the laurel wilt pathogen, Raffaelea lauricola, in Asia provide clues on the source of the clone that is responsible for the current USA epidemic. Forests 10(1), 37; https://doi.org/10.3390/f10010037 (10 pages). 

Dreaden, T.J., A.S. Campbell, C.A. Gonzalez-Bernecke, R.C. Ploetz, and J.A. Smith. 2016. Response of swamp bay, Persea palustris, and redbay, P. borbornia, to Raffaelea spp. isolated from Xyleborus glabratus. Forest Pathology doi: 10.1111/efp.12288 (5 pages). 

Dreaden, T.J., J.M. Davis, Z.W. De Beer, R.C. Ploetz, P.S. Soltis, M.J. Wingfield, and J.A. Smith. 2014. Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biology 118:970-978.  

Dreaden, T.J., J.M. Davis, C.L. Harmon, R.C. Ploetz, A.J. Palmateer, P.S. Soltis, and J.A. Smith. 2014. Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis. 98:379–383. 

Edward, E.A., J. Crane, A. Hodges, and J.L. Osborne. 2010. Potential economic impact of laurel wilt disease on the Florida avocado industry. 20:234-238. 

[http://www.freshfromflorida.com/News-Events/Press-Releases/2012-Press-Releases/Florida-Department-of-Agriculture-and-Consumer-Services-Identifies-Laurel-Wilt-Disease-in-Avocado-Production-Area-of-Miami-Dade-County]. 

Fraedrich et al., 2015. Xyleborus glabratus attacks and systemic colonization by Raffaelea lauricola associated with dieback of Cinnamomum camphora in the southeastern United States. For. Path. 45:60-70. 

Fraedrich, S.W., T.C. Harrington, C.A. Bates, J. Johnson, L.S. Reid, G.S. Best, T.D. Leininger, and T.S. Hawkins. 2011. Susceptibility to laurel wilt and disease incidence in two rare plant species, pondberry and pondspice. Plant. Dis. 95:1056-1062.  

Fraedrich, S.W., T.C. Harrington, R.J. Rabaglia, M.D. Ulyshen, A.E. Mayfield, III, J.L. Hanula, J.M. Eickwort, and D.R. Miller. 2008. A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis. 92:215-224. 

Fraedrich, S.W. 2008. California laurel is susceptible to laurel wilt caused by Raffaelea lauricola. Disease Notes https://doi.org/10.1094/PDIS-92-10-1469A 

Fromby, J.P., J.C. Rodgers III, F.H. Koch, N. Krishnan, D.A. Duerr, and J.J. Riggins. 2018. Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biol Invasions 20:995-1007. 

Fuentes-Guardiola, L.T., J.A. Sánche-González, M.M. Birrueta-Valencia, and H.C. Arrendondo-Bernal. 2019. Hymenoptera parasítica asociada a especies de Xyleborus Eichoff en aguacate en Colima, Mexico. Southwestern Entomologist 44:271-279.  

D.García-Avila,F.J. Trujillo-Arriaga, J.A. López-Buenfil, R. González-Gómez, D. CarrilloL.F. Cruz LF, I. Ruiz-Galván, A. Quezada-Salinas, and N. Acevedo-Reyes. 2016. First report of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Mexico. Florida Entomologist 99(3):555-556. 

Volatiles from the symbiotic fungusRaffaelea lauricolaare synergistic with manuka lures for increased capture of the redbay ambrosia beetle Xyleborus glabratus. Agricultural and Forest Entomology 16: 87-94. 

Green, N. 2012. Redbay ambrosia beetle threatening South Florida avocado crop. The Miami HeraldRecord Number: 201205020500KNRIDDERFLMIAMIH_1ff003dce254 85e0fb7950b2d216e2f7. 

Haack, R.A. 2006. Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Canadian Journal of Forest Research 36: doi.org/10.1139/x05-249  

Haack, R.A. 2001. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry: 1985-2000. Integrated Pest Management Reviews 6:253-282. 

Hamilton, J.L., J.N. Workman, J.N. Campbell, S.W. Fraedrich, and C. Villari. 2020. Rapid detection of Raffaelea lauricola directly from host plant and beetle vector tissues using loop-mediated isothermal amplification. Plant Disease https://doi.org/10.1094/PDIS-02-20-0422-RE 

Hanula, J. L., M. D. Ulyshen, and S. Horn. 2011. Effect of trap type, trap position, time of year, and beetle density on captures of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 104:501508. 

Hanula, J.L. and B. Sullivan. 2008. Manuka oil and phoebe oil are attractive baits for Xyleborus glabratus (Coleoptera: Scolytinae), the vector of laurel wilt. Chemical Ecology 37:1403-1409. 

Hanula, J. L., A. E. Mayfield III, S. W. Fraedrich, and R. J. Rabaglia. 2008. Biology and host association of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southern United States. J. Econ. Entomol. 101: 12761286. 

Harrington, T.C., S.W. Fraedrich, and D.N. Aghayeva. 2008Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404. 

Harrington, T.C., D.N. Aghayeva, and S.W. Fraedrich. 2010. New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratusMycotaxon 111:337–361. 

Hasen, J. and D. Davison. 2012. FDACS-DPI, plant pathology specimen report log number 59989. Div. of Plant Industry, Gainesville, Fla. 

Hughes, M.A., X. Martini, E. Kuhns, J. Colee, A. Mafra-Neto, L.L. Stelinski and J.A. Smith. 2017. Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. J. Applied Entomology doi: 10.1111/jen.12387 (12 pages). 

Hughes, M.A., J.J. Riggins, F.H. Koch, A.I. Cognato, C. Anderson, J.P. Formby, T.J. Dreaden, R.C. Ploetz, and J.A. Smith. 2017. No rest for the laurels: symbiotic invaders cause unprecedented damage to souther USA forests. Biological Invasions 19:2143-2157. 

Hughes,M.H.A. Smith, R.C. Ploetz, P. Kendra, A.E. Mayfield, J.lHanula, J. Hulcr, L.L. Stelinski, S. Cameron, J.J. Riggins, D. Carrillo, RRabagliaJ. Eickwort and T. Pernas. 2015. Recovery plan for laurel wilt on red bay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Progress 16(4):173-209. 

Hughes, M.A., A. Black and J.A. Smith. 2014. First report of laurel wilt caused by Raffaelea lauricola on bay laurel (Laurus noblis) in the United States. Plant Dis. 98:1159. 

Hughes, M.A., G. Brar, R.C. Ploetz, and J.A. Smith. 2013. Field and growth chamber inoculations demonstrate Persea indica a newly recognized host for the laurel wilt pathogen Raffaelea lauricola. Plant Health Progress doi: 10.1094/PHP-2013-0814-02-BR (2 pages). 

Hughes, M.A., K. Shin, J. Eickwort, and J.A. Smith. 2012. First report of laurel wilt disease caused by Raffaelea lauricola on silk bay in Florida. Disease Notes 96:910. 

Hughes, M., J.A. Smith, A..E. Mayfield III, M.C. Minno, and K. Shin. 2011. First report of laurel wilt disease caused by Raffaelea lauricola on pondspice in Florida. https://doi.org/10.1094/PDIS-06-11-0528 

Hulcr, J. and R.R. Dunn. 2011. The sudden emergence of pathogenicity in insect-fungus symbioses threatens naïve forest ecosystems. Proceedings of the Royal Society B. 278:2866-2873. 

Hulcr, J., R. Mann and L.L. Stelinski. 2011. The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. J. Chem. Ecology 37:1374-1377. 

Ibarra-Juarez, L.A., M.A.J. burton, P.H.W. Biedermann, L. Cruz, D. Desgarennes, E. Ibarra-Lacelette, A. Lattorre, A. Alonso-Sánchez, E. Villafan, G. Hanko-Rosas, L. López, M. Vázquez-Rosass-Landa, G. Carrion, D. Carrillo, A. Moya and A. Lamelas2020. Evidence for succession and putative metabolic roles of fungi and bacteria in the farming mutualism of the ambrosia beetle Xyleborus affinismSystems 5(5): doi: 10.1128/mSystems.00541-20 

Ibarra-Juarez, L.A., D. Desgarennes, M. Vázquez-Rosas-Landa, E. Villafan, A. Alonso-Sánchez, O. Ferrera-Rodríguez, A. Moya, D. Carrillo, L. Cruz, G. Carrión, A. López-Buenfil, C. García-Avila, E. Ibarra-Laclette, and A. Lamelas. 2018. Impact of rearing conditions on the ambrosia beetle’s microbiome. Life http://dx.doi.org/10.3390/life8040063  

Inch, S.A., R.C. Ploetz, B. Held, and R. Blanchette. 2012. Histological and anatomical responses in avocado, Persea americana, induced by the vascular wilt pathogen, Raffaelea lauricola. Botany 90:627-635. 

Kendra, P.E., W.S. Montgomery, T.I. Narvaez and D. Carrillo. 2020. Comparison of trap designs for detection of Euwallaceae nr. fornticatus and other Scolytinae (Coleoptera: Curculionidae) that vector fungal pathogens of avocado trees in Florida. J. Encon. Entomology 113:980-987. 

Kendra, P.E.W.S. Montgomery, T.I. Narvaez and D. Carrillo. 2019. Comparison of trap designs for detection of Euwallacea nr. fornicatus and other Scolytinae (Coleoptera: Curculionidae) in Florida avocado groves. Journal of Economic Entomology doi: 10.1093/jee/toz311 

Kendra, P.E., W.S. Montgomery, J. Niogret, N. Tabanca, D. Owens and N.D. Epsky. 2018. Utility of essential oils for the development of host-based lures for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinate), vector of laurel wilt. Open Chemistry 16:393-400. 

Kendra, P.E., D. Owens, W.S. Montgomery, T.I. Narvaez, G.R. Bauchan, E.Q. Schnell, N. Tabanca, and D. Carrillo. 2017. α-Copaene is an attractant, synergistic with 

quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae:Scolytinae)https://doi.org/10.1371/journal.pone.0179416 (20 pages). 

Kendra, P.E., W.S. Montgomery, E.Q. Schnell, M.A. Deyrup and N.D. Epsky. 2016. Efficacy of α-copaene, cubeb and eucalyptol lures for detection of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). Forest Entomology 109:2428-2435. 

Kendra, P.E., W.S. Montgomery, J. Niogret, G.E. Pruett, A.E. Mayfield III, M. MacKenzie, M.A. DeyrupG.R. BauchanR.C. Ploetz, and N.D. Epsky. 2014. North American Lauraceae: Terpenoid emissions, relative attraction, and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 9: e102086. 

Kendra, P.E., W.S. Montgomery, J. Niogret and N.D. Epsky. 2013. An uncertain future for American Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). Amer. J. Plant Sciences 727-738. 

Kendra, P.E., R.C. Ploetz, W.S. Montgomery, J. Niogret, J.E. Peña, G.S. Brar and N.D. Epsky. 2013. Evaluation of Litchi chinensis for host status to Xyleborus glabratus (Coletoptera: Curculionidae: Scolytinae) and susceptibility to laurel wilt disease. Florida Entomologist 96:1442-1453. 

Kendra, P.E., W.S. Montgomery, J.S. Sanchez, M.A. Deyrup, J. Niogret, and N.D. Epsky. 2012. Method for collection of live redbay ambrosia beetles, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 95:513-516.  

Kendra, P.E., W.S. Montgomery, J. Niogret, M.A. Deyrup, L. Guillén and N.D. Epsky. 2012. Xyleborus glabratusX. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): electroantennogram responses to host-based attractants and temporal patterns in host-seeking flight. Environ. Entomology 41:1597-1605. 

Kendra, P.E., J.S. Sanchez, W.S. Montgomery, K.E. Okins, J. Niogret, J.E. Peña, N.D. Epsky and R.R. Heath. 2011. Diversity of Scolytinae (Coleoptera: Curculionidae) attracted to avocado, lychee, and essential oil lures. Florida Entomologist 123-130. 

Koch, F.H. and W.D. Smith. 2008. Spatio-temporal analysis of Xyleborus glabratus (Coleoptera: Circulionidae: Scolytinae) invasion in easter U.S. forests. Environ. Entomology 37:442-452. 

Kuhns E.H.Y. TribuianiX. Martini, W. Meyer, J.E. Peña, J. Hulcr, and L.L. Stelinski. 

Lira-Noriega, A., J. Soberón, and J. Equihua. 2018. Potential invasion of exotic ambrosia beetles Xyleborus glabratus and Euwallaceae sp. In Mexico: a major threat for native and cultivated forest ecosystems. Scientific Reports 8:10179 (DOI:10.1038/s41598-018-28517-4 

Marini, L., R.A. Haack, R.J. Rabaglia, E.P. Toffolo, A. Battisti and M. Faccoli. 2011. Exploring associations between international trade and environmental facts with establishment patterns of exotic Scolytinae. Biol. Invasions 13:2275-2288. 

Martini, X., M.A. Hughes, D. Conover, and J. Smith. 2020. Use of semiochemicals for the management of the redbay ambrosia beetle. Insects 11, 796; doi: 10.3390/insects11110796 (11 pages). 

Martini, X., L. Sobel, D. Conover, A. Mafra-Neto and J. Smith. 2020. Verbenone reduces landing of the redbay ambrosia beetle, vector of the laurel wilt pathogen, on live standing redbay trees. Agricultural and Forest Entomology 22:83-91. 

Martini, X., D.W. Willett, E.H. Kuhns, and L.L. Stelinski. 2016. Distribution of vector host preferences with plant volatiles may reduce spread of insect-transmitted plant pathogens. J. Chemical Ecology 42:357-367. 

Mayfield III, A.E., C. Villari, J.L. Hamilton, J. Slye, W. Langston, K. Oten and S. Fraedrich. 2019. First report of laurel wilt disease caused by Raffaelea lauricola on sassafras in North Carolina. Plant Disease doihttps://doi.org/10.1094/pdis-05-18-0871-pdn 

Mayfield III, A.E. and C. Brownie. 2013. The redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytidae) uses stem silhouette diameter as a visual host-finding cue. Environmental Entomology 42:743-750.  

Mayfield III, A.E., E.L. Barnard, J.A. Smith, S.C. Bernick, J.M. Eickwort, and T.J. Dreaden. 2008. Effect of propiconazole on laurel wilt disease development in redbay trees and on the pathogen in vitro. Arboriculture and Urban Forestry 34:317-324. 

Mayfield III, A.E., J.E. Peña, J.H. Crane, J.A. Smith, C.L. Branch, E.D. Ottoson, and M. Hughes. 2008. Ability of the redbay ambrosia beetle (Coleoptera: SurculionidaeScolytinate) to bore into young avocado (Lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp.). Florida Entomologist 91:485-487. 

Mayfield, A.E., III, J.A. Smith, M. Hughes, and T.J. Dreaden. 2008. First report of laurel wilt disease caused by a Raffaelea sp. on avocado in Florida. Plant Dis. 96:976. 

Mayfield, A.E., III. 2007. Laurel wilt: A serious threat to redbay and other related native plants. Palmetto 24:8–11. 

Mendel, J., K.G. Furton, and D. Mills. 2018. An evaluation of scent-discriminating canines for rapid response to agricultural diseases. HortTechnology 28:102-108. 

Mendel, J., C. Burns, B. Kallifatidis, E. Evans, J. Crane, K.G. Furton and D. Mills. 2018. Agri-dogs: using canines for earlier detection of laurel wilt disease affecting avocado trees in south Florida. HortTechnology 28:109-116. 

Mendel, J.L. 2017. Laurel wilt disease: early detection through canine olfaction and “omics” insights into disease progression. FIU Digital Commons DOI: 10.25148/etd.FIDC001920 

Menocal, O., L.F. Cruz, P.E. Kendra, J.H. Crane, M.F. Cooperband, R.C. Ploetz, and D. Carrillo. 2018. Xyleborus bispinatus reared on artificial media in the presence or absence of the laurel wilt pathogen (Raffaelea lauricola). Insects 9: doi:10.3390/insects9010030 (13 pages). 

Menocal, O., P.E. Kendra, W.S. Montgomery, J.H. Crane, and D. Carrillo. 2018. Vertical distribution and daily flight periodicity of ambrosia beetles (Coleoptera: Curculionidae) in Florida avocado orchards affected by laurel wilt. 2018. J. Econ. Entomology 111:1190-1196. 

Menocal, O., L.F. Cruz, P.E. Kendra, J.H. Crane, R.C. Ploetz and D. Carrillo. 2017. Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on media containing sawdust from avocado or silkbay, with or without Raffaelea lauricola (OphiostomatalesOphiostomataceae). Environmental Entomol 46:1275-1283. 

Mosquera, M., E.A. Evans and R. Ploetz. 2015. Assessing the profitability of avocado production in south Florida in the presence of laurel wilt. Theoretical Economics Letters 5:343-356. 

Niogret, P.E. Kendra. N.D. Epsky, and R.R. Heath. 2011. Comparative analysis of terpenoid emissions from Florida host trees of the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 94:1010-1017.  

O’Donnell, K., R. Libeskind-Hadas, J. Hulcr, C. Bateman, M.T. Kasson, R.C. Ploetz, J.L. Konkol, J.N. Ploetz, D. Carrillo, A. Campbell, R.E> Duncan, P.N.H. Liyanage, A. Eskalen, S.C. Lynch, D.M. Geiser, S. Freeman, Z. Mendel, M. Sharon, T. Aoki, A.A. Cossé, and A.P. Rooney. 2016. Invasive Asian Fusarium – Euwallacea ambrosia beetle mutualists pose a serios threat to forest, urban landscapes and the avocado industry. Phytoparasitica 44:435-442. 

Owens, D., L.F. Cruz, W.S. Montgomery, T.I. Narvaez, E.Q. Schnell, N. Tabanca, R.E. Duncan, D. Carrillo and P.E. Kendra. 2018. Host range expansion and increasing damage potential of Euwallaceae nr. fornicates (Coleoptera: Curuculionidae) in Florida. Florida Entomologist 101:229-236. 

Parra, P.P., W. Dantes, A. Sanford, C. de la Torre, J. Pérez, D. Hadziabdic, B. Schaffer, and R. Gazis. 2020. Rapid detection of the laurel wilt pathogen in sapwood of Lauraceae hosts. Plant Health Progress https://doi.org/10.1094/PHP-06-20-0049-RS 

Peña, J.E., S.W. Weihman, S. McLean, R.D. Cave, D. Carrillo, R.E. Duncan, G. Evans, S. Krauth, M.C. Thomas, S.S. Lu, P.E. Kendra, and A.L. Roda. 2015. Predators and parasitoids associated with Scolytidae in Persea species (Laurales: Lauraceae) and other Lauraceae in Florida and Taiwan. Florida Entomologist 98:903-910. 

Peña, J.E., D. Carrillo, R.E. Duncan, J.L. Capinera, G. Brar, S. McLean, M.L. Arpaia, E. Focht, J.A. Smith, M. Hughes and P.E. Kendra. 2012. Susceptibility of Persea spp. and other Lauraceae to attack by redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: 

Curculionidae: Scolytinae). Florida Entomol. 95:783-787. 

Peña, J.E., J.H. Crane, J.L. Capinera. R.E. Duncan, P.E. Kendra, R.C. Ploetz, S. McLean, G. Brar, M.C. Thomas, and R.D. Cave. 2011. Chemical control of the redbay ambrosia beetle, Xyleborus glabratus, and other Scolytinae (Coleoptera: Curculionidae). Florida Entomologist 94:882-896.  

Pisani, C., R.C. Ploetz, E. Stover, M.A. Ritenour and B. Scully. 2015. Laurel wilt in avocado: review of an emerging disease. International J. Plant Biol. Res. 3:1043-1049. 

 C.Ploetz,M.A. Hughes, P.E. Kendra, S.W. Fraedrich, D. Carrillo, L.L. Stelinski, J. Hulcr, A.E. Mayfield IIIT.L. Dreaden, J.H. Crane, E.E. Evans, B.A. Schaffer, and J. Rollins. 2017. Recovery plan for laurel wilt of avocado, caused by Raffaelea lauricola. National Plant Disease Recovery System. Plant Health Progress 18: 51-77. 

Ploetz, R. C., P. E. Kendra, R. A. Choudhury, J. A. Rollins, A. Campbell, K. Garrett, M. Hughes, and T. Dreaden. 2017. Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. Forests. 8: 48. 

Ploetz, R.C., J.L. Konkol, J.M. Pérez-Martínez, and R. Fernandez. 2017. Management of laurel wilt of avocado caused by Raffaelea lauricola. European J. Plant Pathology doi: 10.1007/s10658-017-1173-1 (11 pages). 

Ploetz, R. C., J. L. Konkol, T. Narvaez, R. E. Duncan, R. J. Saucedo, A. Campbell, J. Mantilla, D. Carrillo, and P. E. Kendra. 2017. Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. J. Econ. Entomol. 110: 347354. 

Ploetz, R.C., M.A. Hughes, P.E. Kendra, S.W. Fraedrich, D. Carrillo, L.L. Stelinski, J. Hulcr, A.E. Mayfield III, T.J. Dreaden, J.H. Crane, E.A. Evans, B.A. Schaffer, and J.A. Rollins. 2016. Recovery plant for laurel wilt of avocado, caused by Raffaelea lauricola. Plant Health Recovery 18:51-77. 

Ploetz, R.C., Y.Y. Thant, M.A. Hughes, T.J. Dreaden, J.L. Konkol, A.T. Kyaw, J.A. Smith and L. Harmon. 2016. Laurel wilt, caused by Raffaelea lauricola, is detected for the first time outside the southeastern United States. Disease Notes 110:2166. 

Ploetz, R.C., B. Schaffer, A.I. Vargas, J.L. Konkol, J. Salvatierra and R. Wideman. 2015. Impact of laurel wilt, caused by Raffaelea lauricola, on leaf gas exchange and xylem sap flow in avocado, Persea americanaPhytopathology 105:433-440. 

Ploetz, R.C., J. Hulcr, M.J. Wingfield, and Z.W. de Beer. 2013. Destructive tree diseases that are associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Disease 95:856–872. 

Ploetz, R.C. and J. Konkol. 2013. First report of gulf licariaLicaria trianda, as a suspect of laurel wilt. Plant Dis. 97:1248. 

Ploetz, R.C., Pérez-Martínez, J.M., Smith, J.A., Hughes, M., Dreaden, T.J., Inch, S. A. and Fu, Y. 2012. Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant Pathology 61:801–808. 

Ploetz, R.C., S.A. Inch, J.M. Pérez-Martínez, and T.L. White, Jr. 2012. Systemic infection of avocado, Persea americana, by Raffaelea lauricola, does not progress into fruit pulp or seed. J. Phytopathology 160:491-495. 

Ploetz, R.C., J.E. Peña, J.A. Smith, T.J. Dreaden, and J.H. Crane. 2011. Laurel wilt, caused by Raffaelea lauricola, is confirmed in Miami-Dade County, center of Florida’s commercial avocado production. Plant Dis. 95 (12), 1589. 

Ploetz, R.C., J.M. Pérez-Martínez, J.A. Smith, M. Hughes, T.J. Dreaden, S.A. Inch and Y. Fu. 2011. Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant Pathology 61:801-808. 

Ploetz, R.C., J.M. Pérez-Martínez, E.A. Evans and S.A. Inch. 2011. Toward fungicidal management of laurel wilt of avocado. Plant Disease 95:977-982. 

Ploetz, R.C., J.A. Smith, S.A. Inch, J.E. Peña, E.A. Evans, J.H. Crane, P. Kendra, J. Hulcr, L. Stelinski and R. Schnell. 2011. Laurel wilt: a global threat to avocado production. Proc. VII World Avocado Congress, Cairns, Australia, 5-9 September 2011 (14 pages). 

Ranger, C.M., M.E. Reding, K. Addesso, M. Ginzel, and D. Rassati. 2020. Semiochemical-mediated host selection by Xylosandrus app. ambrosia beetles (Coleoptera: Curculionidae) attacking horticultural tree crops: a review of basic and applied science. The Canadian Entomologist https://doi.org/10.4039/tce.2020.51 (18 pages). 

Ranger, C.M., M.E. Reding, P.B. Schultz, and J.B. Oliver. 2013. Influence of flood-stress on ambrosia beetle host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology 15:56-64. 

Ranger, C. M., M. E. Reding, A. B. Persad, and D. A. Herms. 2010. Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agric. For. Entomol. 12:177185. 

Sankaran, S., L. R. Khot, J. M. Maja and R. Ehsani. 2013. Comparison of two multiband cameras for use on small UAVs in agriculture2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL. 4 pages. doi: 10.1109/WHISPERS.2013.8080668. 

Sankaran, S., R. Ehsani, S.A. Inch, and R.C. Ploetz. 2012. Evaluation of visible-near infrared reflectance spectra of avocado leaves as a nondestructive sensing tool for detection of laurel wilt. Plant Dis. 96:1683-1689. 

Saucedo, J.R., R.C. Ploetz, J.L. Konkol, D. Carrillo and R. Gazis. 2018. Partnerships between ambrosia beetles and fungi: lineage-specific promiscuity among vectors of the laurel wilt pathogen, Raffaelea lauricola. Microbial Ecology 76:925-940. 

Saucedo, J.R., R.C. Ploetz, J.L. Konkol, M. Angel, J. Mantilla, O. Menocal, and D. Carrillo. 2017. Nutritional symbionts of a putative vector, Xyleborus bispinatus, of the laurel wilt pathogen of avocado, Raffaelea lauricola. Symbiosis. doi: 10.1007/s13199-017-0514-3. 

Smith, J.A., L. Mont, A.E. Mayfield III, C.A. Bates, W.A. Lamborn, and S.W. Fraedrich. 2009. First report of laurel wilt disease caused by Raffaelea lauricola on camphor in Florida and Georgia. Disease Notes https://doi.org/10.1094/PDIS-93-2-0198B 

Smith, J.A., T.J. Dreaden, A.E. Mayfield III, A. Boone, S.W. Fraedrich and C. Bates. 2009. First report of laurel wilt disease caused by Raffaelea lauricola on camphor in Florida and Georgia. Disease Notes https://doi.org/10.1094/PDIS-93-10-1079B 

Spence, D.J., J.A. Smith, J. Hulcr, R. Ploetz, and L.L. Stelinski. 2013. Effect of chipping on emergence of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) and recovery of the laurel wilt pathogen from infested wood chips. Journal of Economic Entomology, 106:2093-2100. 

Wasielewski, J. and J. Crane. 2017. Suppressing laurel wilt through collaboration and education. Proc. Fla. State Hort. Soc. 130:24-26.  

Wasielewski, J. J.H. Crane, and D. Carrillo. 2016. Laurel wilt – an update on the disease’s impact on South Florida’s avocado industry. Proc. Fla. State Hort. Soc. 129:1-3. 

Wasielewski, J., J.H. Crane, and D. Pybas. 2014. Laure wilt in avocados – history, current strategies and a look to the future. Proc. Fla. State Hort. Soc. 127:3-5. 

Zhang, Y., J. Zhang, D. Vanderpool, J.A. Smith and J.A. Rollins. 2020. Genomic and transcriptomic insights into Raffaelea lauricolpathogensisBMC Genomics 21, 570 (2020). https://doi.org/10.1186/s12864-020-06988-y 

Zhou, Y., P.B. Avery, D. Carrillo, R.H. Duncan, A. Lukowsky, R.D. Cave, and N.O Keyhani. 2018. Identification of the Achilles heels of the laurel wilt pathogen and its beetle vector. Applied and Microbiology and Biotechnology 102:5673-5684. 

Zhou, Y., D. Lu, R. Joseph, T. Li and N.O. Keyhani. 2020. High efficiency transformation and mutant screening of the laurel wilt pathogen, Raffaelea lauricola. Applied Microbiology and Biotechnology 104:7331-7343.

TREC Resources